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ABSTRACT

This paper discusses the merits and disadvantages of a specific proposal for a numerical calculation of the reference dose (RfD) with explicit recognition of both uncertainty and variability distributions.  Tentatively it is suggested that the RfD be the lower (more restrictive) value of:

· The daily dose rate that is expected (with 95% confidence) to produce less than 1/100,000 incidence over background of a minimally adverse response in a standard general population of mixed ages and genders, or

· The daily dose rate that is expected (with 95% confidence) to produce less than a 1/1,000 incidence over background of a minimally adverse response in a definable sensitive subpopulation.

There are important challenges in developing appropriate procedures to make such estimates, including realistic representation of uncertainties in the size and relative sensitivities of putative "sensitive subgroups".  To be a viable replacement for the current definition of the RfD, a numerical definition needs to be  

· A plausible representation of the risk management values that both lay people and "experts" believe are intended to be achieved by current RfD’s, (while better representing the "truth" that current RfD’s cannot be expected to achieve zero risk with absolute confidence for a mixed population with widely varying sensitivities),

· Estimable with no greater amount of chemical specific information than is traditionally collected to estimate current RfD values,

· Subjected to a series of comparisons with existing RfD’s to evaluate overall implications for current regulatory values,

· A more flexible value in the sense of facilitating the development of procedures to allow the incorporation of more advanced technical information--e.g. defined data on human distributions of sensitivity; information on comparative pharmacokinetic and/or pharmacodynamics in humans vs test species, etc.

The discussion evaluates the straw man proposal in the light of each of these points, and assesses the risks and uncertainties inherent in present RfD's by applying existing distributional information on various uncertainty factors to 18 of 20 randomly-selected entries from IRIS.  Briefly, the current analysis suggests that if simple unlimited unimodal lognormal distributions are assumed for human interindividual variability, current RfD's seem to meet the 1/100,000 risk criterion with somewhat better than 50% confidence.  However the current RfD's appear to generally fall short of the goal of meeting this risk criterion with 95% confidence, typically by an order of magnitude in dose or somewhat more.  Sensitivity and ”value of perfect information” analyses on the uncertainties contributing to this finding indicate that the single most important uncertainty is the extent of human interindividual variability in the doses of specific chemicals that cause adverse responses.

Our major conclusion is that it is currently feasible to both specify quantitative probabilistic performance objectives for RfD’s and to make tentative assessments about whether specific current RfDs for real chemicals seem to meet those objectives.  Similarly it is also possible to make some preliminary estimates of how much risk is posed by exposures in the neighborhood of current RfD’s, and what the uncertainties are in such estimates.  It is therefore possible and, we think, desirable, to harmonize cancer and noncancer risk assessments by making quantitative noncancer risk estimates comparable to those traditionally made for carcinogenic risks. The benefits we expect from this change will be an increase in the candor of public discussion of the possible effects of moderate dose exposures to chemicals posing non-cancer risks, and encouragement for the collection of better scientific information related to toxic risks in people—particularly the extent and distributional form of interindividual differences among people in susceptibility.
INTRODUCTION

Potential Benefits of Quantitative Approaches to Non-Cancer Risk-Assessment and Risk Management 

Much has changed since the landmark paper of Lehman and Fitzhugh in 1954 [
], which set the paradigm for traditional assessments of “Acceptable Daily Intakes” and “Reference Doses” with the original “100-fold safety factor”. Today we have the experience and the computational capabilities to imagine distributional approaches in place of simple rule-of-thumb formulae [
,
,
,
,
,
].  We also have the benefit of an enormous flowering of biomedical science over the last few decades from which we can draw helpful data (although many of the data are not ideal for our purposes).  Finally we live in an age where the questions for analysis have broadened beyond the main issues confronting the U.S. Food and Drug Administration of 1954.  In contexts as diverse as occupational safety and health, general community air pollution, drinking water contaminants and community exposures from waste sites, decision makers and the public ask questions which might be rephrased as “Do exposures to X at Y fraction of an estimated No Adverse Effect Level really pose enough of a risk of harm to merit directing major resources to prevention?” and on the other hand, “Wouldn’t it be more prudent to build in extra safety factors to protect against effects to people who may be more sensitive than most because of young or old age, particular pathologies, or other causes of special vulnerability?” [
,
]  And there is increasing pressure to juxtapose quantitative estimates of economic costs with expected benefits of different options for control of chemical exposures [
].  To address these questions one needs to make at least some quantitative estimates of the risks that result from current approaches, recognizing that there will be substantial uncertainties in such estimates. 

One basic concept that lies at the heart of this analysis has not changed from the time of Lehman and Fitzhugh.  This is the idea that many toxic effects result from placing a chemically-induced stress on an organism that exceeds some homeostatic buffering capacity.  {Other types of mechanisms do exist, however, such as an irreversible accumulating damage model (e.g. for chronic neurological degenerative conditions) or a risk factor model (e.g., for cardiovascular diseases) whereby values of a continuous risk factor such as blood pressure or birth weight have strong quantitative relationships with the rates of occurrence of adverse cardiovascular events or infant mortality—see [5] for further discussion.}  However, where it is applicable, the basic homeostatic system overwhelming model leads to an expectation that there should be individual thresholds for such effects.  An individual person will show a particular response (or a response at a specific level of severity) only when their individual threshold exposure level for the chemical in question has been exceeded.  However this expectation for individual thresholds for response does not necessarily mean that one can specify a level of exposure that poses zero risk for a diverse population.  In a large group of exposed people with differing homeostatic buffering capacities, and different pre-existing pathologies there may be people for whom a marginal perturbation of a key physiological process is sufficient to make the difference between barely adequate and inadequate function to avoid an adverse response, or even to sustain life.  

Therefore one benefit of adopting a quantitative approach for defining an RfD would be to help reduce the misimpression that toxicological mechanisms consistent with individual thresholds necessarily imply population thresholds (doses where there is no chance that any person will respond).  A second benefit is that a quantitative approach would allow a harmonization of approaches to risk analysis between cancer and non-cancer outcomes—although in the direction of making the non-cancer assessments more like the quantitative projections done for carcinogenesis, rather than the reverse.  Such an approach would also provide a basis to quantitatively assess risks for input to policy discussions.  Both the juxtapositions of costs and benefits of policies to control specific exposures, and judgements of the equity or “fairness” of the burden of health risk potentially imposed on vulnerable subgroups may be of interest.  Such an approach would encourage the collection of better quantitative information on human variability, toxic mechanisms, and risks.  Finally, a quantitative analytical framework could allow comparable analyses of uncertainties among exposure and toxic potency—potentially leading to “value of information” analyses helpful in setting research priorities.

Disadvantages/Costs of a Quantitative Risk Framework

There are, however, several significant costs—both financial and social--for the enterprise proposed here:

· First, the community of “experts” will be obliged to both assess and either publicly defend or rethink past choices of “acceptable” intakes and risks.

· Second, social acceptance of finite risks and of explicit decision-making on uncomfortable tradeoffs may not come easily.  We would, however, argue that in the long run, society will benefit from acquiring the maturity to confront such tradeoffs rather than hiding them under the bland cover of expert assurances of “safety” [8].

· Third, the increased use of detailed numerical expressions will lead some to imagine that the estimates of risks are more precise than they are.  This must be counteracted by strenuous efforts to fairly assess and communicate the substantial uncertainties in quantitative assessments that are feasible in the near term.  Among the uncertainties will be the potential for significant controversy over arcane choices such as distributional forms for human interindividual variability (e.g., unimodal vs bi- or multimodal) and model uncertainties in the representation of physiological processes.

Elements of the “Straw Man” Proposal

 Technical people should enjoy no special privilege in choosing among social policy proposals.  However, because of their familiarity with the nuances and difficulties in the science that is being used, it is appropriate, we believe, for technical people to propose substantive policy refinements [
] for societal consideration.  The obligation in such a proposal is to make clear to those making choices what the “structure” of the proposal is and what are the “specific choices” that might be made within it; and to contrast these with current practice.  In particular, because of the reluctance of the policy/risk management community to squarely face quantitative health risk issues involving the probabilistic concepts of both variability and uncertainty [8,
], offering an initial “straw man” suggestion is, we believe, the best way to stimulate a serious examination of possible technical and policy choices in this area.  To facilitate analysis here it is tentatively suggested that the RfD’s should be the lower (more restrictive) value of:

· The daily dose rate that is expected (with 95% confidence) to produce less than 1/100,000 excess incidence over background of a minimally adverse response in a standard general population of mixed ages and genders, or

· The daily dose rate that is expected (with 95% confidence) to produce less than a 1/1,000 excess incidence over background of a minimally adverse response in a definable sensitive subpopulation.

True quantitative risk management benchmarks are not very common in current legislation.  Our preliminary proposal of a 1/100,000 incidence was influenced by California’s Proposition 65 law, passed by popular initiative.  This law requires notification of affected people if conservative risk assessment procedures indicate that they may be exposed to an incremental 1/100,000 lifetime risk of the serious outcome of cancer.  Choosing this incidence and a 95% confidence for the uncertainty dimension for a minimally adverse response in a standard general population (including usual incidences of putatively sensitive subgroups) makes the straw man proposal above arguably a little more health protective than the Proposition 65 mandate.  Adding the (B) proviso is a further recognition that members of relatively rare identifiable “sensitive subgroups” may need additional special consideration if they are not to be unduly burdened by policies that appear protective for the great majority of people.  However, we do not explore this proviso in any depth in this paper.  

Requirements for a Viable System

For such a proposal to be adopted in the next couple of decades, we believe it must:

· Be a plausible representation of society’s risk management values, 

· Require no greater amount of chemical specific information than is traditionally collected, 

· Be readily compared with the current approach to RfD’s, and 

· Accommodate emerging technical information--e.g. defined data on human distributions of sensitivity; information on comparative pharmacokinetic and/or pharmacodynamics in humans vs test species, etc. 

The main body of this paper will address the second and third of these points by developing and applying an abbreviated candidate procedure for distributional analysis to a representative set of entries in the U. S. Environmental Protection Agency’s “IRIS” (Integrated Risk Information System) data base.  Chemical-specific data used for analysis was strictly limited to that recorded in IRIS in part to assess the difficulties and feasibility of distributional analyses with readily accessible information.  Somewhat more precise analyses might be possible in some cases utilizing the toxicological studies referred to by the writers of the IRIS evaluations.  As part of our sensitivity analyses summarized briefly at the end of the paper, we have examined one such possibility by removing the uncertainty we assume for the animal dose response relationship. 

To bridge the gap between the chemical-specific data recorded in IRIS and the quantitative distributional characterization of risk that is desired requires use of distributional information gathered for other compounds, and an assumption that the IRIS toxicants and toxic effects being evaluated are reasonably likely to be representative members of the classes of chemicals and effects for whom putatively relevant data are available.  In making this proposal, we expect that there will be further development of quantitative evaluation techniques, and that more and better data will become available allowing distinctions to be defined and assessed for different putative “representative classes” of chemicals and effects.  This schema in its current state of development should be regarded as tentative and provisional—to be informed in future years as the mechanistically relevant categories of the analysis are increasingly refined and elaborated.  We thus imagine an extended transitional period.  During this period, judgments of the applicability of then current data and associated distributional characterizations to specific chemicals and effects will be made based on judgments of the strength of the analogies between the cases for which risks are needed and the cases contributing various types of information.  As an example of such an exercise of judgment, our analysis below applies the current quantitative projection framework to only 18 of 20 IRIS entries that were selected for study.

Selection of IRIS Entries for Analysis and Basic Description

The central list of substances covered by IRIS was downloaded from the web site (http://www.epa.gov/iris/subst/index.html) on October 6, 2000.  There were a total of 538 entries accompanied by dates on which each entry had last had a “significant revision”.  The distribution of these dates was used to stratify the sample for selection of 20 entries for initial examination. 

Of the initial selection of 20 IRIS entries, several required replacement for various reasons with the next entries on the date- and alphabetically-sorted list.  The RfD’s for cyanazine and methyl chlorocarbonate were reported as withdrawn; leading to replacements with acetochlor and 2,4,6-trinitrotoluene, respectively.  The hydroquinone entry was listed as having inadequate data and no RfD was calculated; leading to replacement with metolachlor.  Finally, the RfD for 1,2-dichloroethane was found to be based on findings of carcinogenesis only—with no noncancer/uncertainty factor assessments.  This compound was therefore replaced with dichloromethane.  

Table 2 summarizes the 20 IRIS entries that remained after this initial selection process.  On further review, two further exclusions were made to leave a set of 18 entries that could be considered reasonably representative of typical RfD uncertainty factor assessments.  Zinc and compounds were excluded because the RfD derivation included a substantial modification of standard approaches in the light of the fact that zinc is an essential element.  Ammonia was excluded because there was only an RfC—not an RfD—and the RfC was based on negative results for a putatively insensitive chronic endpoint at the highest exposure level studied in an occupational epidemiological study, providing both an unusual and a more questionable basis for projection of finite risks than was present for most other RfD’s.  

Table 3 summarizes the uncertainty factors that were the input for the definition of the remaining 18 RfD’s selected for analysis, and briefly describes the critical toxicological data.  A 10-fold factor for human interindividual variability was used in calculating all the RfD’s.  Animal data were the basis of RfD in 17 of the cases, although for methyl methacrylate the UFA was only 3 rather than the standard 10 because of a lack of a forestomach in humans and because of slower metabolism in humans.  At the same time, a database factor of 3 was added for methyl methacrylate because of a "lack of a chronic study in a second species, the lack of a neurologic study, and the lack of a developmental or reproductive toxicity study via the  oral route" given repro/developmental effects seen by other routes.  A 10-fold factor was incorporated into the RfD to adjust for the use of a subchronic, rather than a chronic study in 7 cases.  In one other case (trinitrotoluene) the writeup is not completely explicit about the assignment of 3 (or the square root of 10) to the subchronic/chronic and LOAEL/NOAEL (Low Observed Adverse Effect Level/No Observed Adverse Effect Level) factors, but this was inferred from the statement that the overall uncertainty factor  “…of 1000 allows for uncertainties in laboratory animal-to-man dose extrapolation, interindividual sensitivity, subchronic-to-chronic extrapolation, and LOAEL-to-NOAEL extrapolation.”  A LOAEL/NOAEL factor of 10 was used in one other case, and database incompleteness factors were used in three cases.

Basic Approach for Human Risk Estimation

Our analytical procedure for projecting human risks was guided by two principles:  

· It is desirable to project finite risks from doses of toxicants observed to have an effect judged to be adverse (that is, LOAELs)--rather than the doses that happen to have been included in investigator’s experimental design but proved insufficient to induce a statistically detectable adverse response in the experimental system used for toxicity testing (the NOAEL).  As can be seen in Table 2, in one case (methoxychlor), this caused us to base our risk projection on available data from a rat study, rather than the rabbit study used by EPA for the RfD.  The rabbit study had a lower NOAEL, but the rat study had a lower LOAEL.

· For clear thinking and scientific analysis it is desirable to separate, as fully as possible, the issues of animal-to-human dose equivalence projection, and the extent of interindividual variability in experimental animals vs humans.  This is because there are good reasons both in theory and empirical observations to believe that distributions of variability in sensitivity in wild-type humans (of mixed ages and concurrent exposures to pharmaceuticals and pre-existing illnesses) are considerably broader than the groups of uniform-age healthy experimental animals that are generally exposed under highly controlled conditions in the course of toxicological testing.  Therefore, the ideal is to do the animal/human projection from the dose causing effects in a median member of an experimental animal population (the ED50) to the dose causing the same effects in a median member of an exposed group of humans.   

Our basic analysis proceeds in the following steps:  

· Begin with the animal LOAEL, if one is available, and derive an uncertainty distribution for the animal ED50.  (If an animal LOAEL is not available, apply different distributional assumptions to derive an uncertainty distribution for the animal ED50 from the available animal NOAEL).

· Apply distributional corrections based on observational data for subchronic/chronic experimental design, and database incompleteness factors (if these were used by EPA in the derivation of the RfD), from data previously analyzed by Baird et al., and Evans and Baird [2,
].

· If the RfD was based on experimental animal data, project a human chronic ED50 by applying a distributional correction for the uncertainty in the projection of human equivalent doses, based on data assembled by Price et al. [
].  From these data we have derived distributional corrections that are sensitive to both the particular species of animal used for the “critical study” leading to the RfD, and also the number of other species of animals for whom comparable data were also available.  (That is, taking account of the fact that a projection based on the most sensitive of 4 species is inherently more “conservative” than a projection made in a case where eligible data were only available for a single species.)

· Assess human risks at the RfD and other doses from the projected human chronic ED50 assuming a lognormal distribution of human susceptibilities, with uncertainty in the spread of human susceptibility drawn from an expanded database of human interindividual variability observations, analyzed by techniques that have been previously described [6,
] with recently updated results summarized in the last part of the following section.

Distributions Used to Represent Various Components of Standard RfD Analyses

The discussion below describes our distributional representation of each of the component RfD adjustment factors in turn.  Where we have empirical data for comparison, we assess the degree of health-protective “conservatism” (or the reverse) that appears to be built into the point value used in contemporary standard RfD determinations.  Of the standard set of factors, the LOAEL/NOAEL conversion is not included because we have chosen to base our risk projections on LOAELs in preference wherever these values were available.

Estimating Animal ED50’s for Toxicologically Significant Adverse Effects

In implementing this schema, we found it necessary to make an important distinction between cases where the LOAEL’s were for continuous endpoints (11 out of our 18 IRIS entries, as indicated in Table 3), and cases where there was either a LOAEL for a quantal endpoint (5 out of 18) or no LOAEL at all (2 out of 18).  A finding of a LOAEL for a continuous endpoint generally means that a difference in population average values has been observed between exposed and control groups that the evaluators considered to be a meaningfully “adverse” toxicological response.  Given this, we decided that no further adjustment was indicated to translate these LOAEL’s for continuous endpoints into “ED50’s”—doses expected to cause a toxicologically significant adverse response in the median animal.  

On the other hand, some upward dose adjustment is likely to be needed to estimate ED50’s for the 5 cases where there were observed LOAEL’s for quantal effects, and the two other cases where we needed to base our projections on NOAELs in the absence of observed LOAELs.  Unfortunately no published empirical data are readily available to make these adjustments.  The analyses of Faustman, Allen, and colleagues [
,
,
] are most promising in this regard, and the detailed model fits to they report doing for developmental effects could be used to derive the required distribution, at least for reproductive effect endpoints.  However the focus of their published analyses is on lower confidence limits, rather than central estimates, as we require for the current assessment.  

In the absence of a readily accessible body of empirical observations of ED50/LOAEL and ED50/NOAEL ratios, we developed provisional uncertainty distributions using three components:

· We assume that the dose response relationships in the animal experiments for the quantal responses reflect a lognormal distribution of individual thresholds for response.  Given this, the ratio of the dose causing any particular percentage response (ED X) and the ED50 can be calculated simply from the inverse of the cumulative normal distribution and the standard deviation of the base 10 logarithms of the distribution of individual thresholds [abbreviated Log(GSD)].  For example, given a lognormal distribution of thresholds, the ED05, ED10, and ED20’s would be, respectively, 1.645, 1.28, and 0.84 logarithmic standard deviations below the ED50.  With a median Log(GSD) from available oral lethality data or inhalation data (Figure 1) of about 0.13, the corresponding upward multiplicative dose adjustments to reach the ED50 would be 101.645 X 0.13 = 1.64 fold for the ED05, 101.28 X 0.13 = 1.47 fold for the ED10, and 
100.84 X 0.13 = 1.29 fold for the ED20.

· To capture the variation in probit slopes and corresponding Log(GSD)’s among chemicals and tests, we use a lognormal fit to the data of Weil [
] on the probit slopes observed in 490 oral lethality experiments processed by conventional log probit dose response analysis techniques [
].  It can be seen in Figure 1 that these Log(GSD) observations are themselves reasonably described by the lognormal distribution represented by the regression line.  It can also be seen that the fitted distribution corresponds fairly closely to the distribution of inhalation lethality probit slopes compiled by ten Berge [
].

· As a placeholder for a more detailed survey of experiments, we judged that the typical chronic experiment yielding a quantal LOAEL might correspond to an incidence of effect of approximately 20%, implying that, on average, the log of ED50 would be about .84 log standard deviations greater that the log of the LOAEL.  Different experiments would be expected to be different, of course, and we judged that the ± 1 standard deviation limits might correspond to approximately a four-fold range—that is, approximately 10-40% incidences of effect suggesting that the standard deviation of this distribution is about .5.  [In our sensitivity analysis, we also considered the effect of assuming that the median quantal LOAEL would correspond to a 10% incidence of effect with the ± 1 standard deviation limits corresponding to 5%-20%.  This alternative distribution was based on the judgment of George Daston, an experienced experimental toxicologist with Proctor and Gamble, Inc.]?put in footnote?  Based on these judgments, on each trial of our Monte Carlo simulation we first calculated how many standard deviations in a lognormal distribution of thresholds would be needed to convert the LOAEL to the ED50. (represented as a normal distribution with a mean of 0.84 and a standard deviation of 0.51). We then combined this with a random draw from the lognormal distribution of Log(GSD)’s fitted to the Weil data to arrive at a value for the Log(ED50/LOAEL) ratio for each trial.  The resulting uncertainty distribution is shown in the second column of Table 4.  In most cases the ED50/LOAEL adjustment indicated by these distributional assumptions is relatively modest—with 1%-99% limits ranging from a factor slightly less than 1 (corresponding to a rare possibility that because of unusual dose selection and/or an insensitive assay the LOAEL on a particular experiment might actually be a little less than the ED50) to about 4.  

A somewhat larger and more uncertain adjustment was needed for the two cases where no LOAEL was available, and the quantitative analysis needed to be based on a NOAEL.  For these cases we derived the required distribution from a judgment that in the absence of a detectable adverse effect at any of the doses studied, the NOAEL might typically correspond to an ED01 with ± 1 standard deviation limits on the incidence of effects spanning a 5-fold range on either side—i.e. approximately 0.2%-5%.  (In the simulations, this was implemented as defining the number of Log(GSD)’s required to go from a NOEL to an ED50 as a normal distribution with a median of 2.326 and a standard deviation of 0.617.)  The resulting distribution, shown in the third column of Table 4, has a 1%-99% confidence range from slightly over 1 to somewhat over 30.

Subchronic/chronic (UFS)

Directly applicable empirical data are available for this uncertainty factor from the prior work of Baird et al. [2], analyzing data of Weil and McCollister [
] and Nessel et al. [
] for ratios of subchronic/chronic NOAELs.  The 61 chemicals for which comparative data are available span a wide range of industrial chemicals, include 11 sets of assays in mice (with the remainder in rats), and also include 11 sets of assays by inhalation (with the remainder via oral dosing).  The distribution of the subchronic/chronic ratios is approximately lognormal (Figure 2) with a geometric mean of 2.01 and a geometric standard deviation of 2.17.  

{To create the type of plot shown in Figure 2, the measurements are first arranged in order and given ranks i (1 through N).  Then one calculates a "percentage score" for each ordered value as 100*(i - 3/8)/(N + 1/4) [
].  These differ from the usual definition of a "percentile" in which the highest observation is assigned a score of 100.  Finally, from cumulative normal distribution tables or the Microsoft Excel function normsinv() one calculates the number of standard deviations above or below the median of a normal distribution that would be expected to be needed to demarcate an area under a normal curve corresponding to each "percentage score," if the distribution of values were in fact normal (Gaussian).  In the regression line calculated from this type of plot, the intercept (Z=0) represents the expected median, and the slope represents an estimate of the standard deviation—although usual method of moments calculation methods for these statistics should be used in preference unless there are truncations in the data, such as detection limits for chemical concentration data.} put in footnote??
This distribution has a few implications that are worth noting in passing.  First, although the standard uncertainty factor would be 10, a correction of just about 2-fold would make the appropriate adjustment for half or more of the cases.  10-fold would correspond to approximately the 98th percentile of the distribution.  On the other hand, from this it also follows that in approximately 18% of the cases the subchronic/chronic ratio would be expected to be less than 1 (that is, that the subchronic study would in these unusual cases determine a NOAEL at a slightly lower dose than the chronic study), probably in part due to the different sensitivities of endpoints/assays studied in chronic vs subchronic studies and inaccuracies of the experimental systems in estimating NOAELs.  In our simulations, we chose to retain this observation from the data, taking the unlimited lognormal distribution for subchronic/chronic ratios as defined by the geometric mean and geometric standard deviation given above.  

Database Incompleteness (D)

As indicated in Table 3, this factor was only mentioned in four cases, and because in one of those cases (methyl methacrylate) it was associated with an unusual reduced animal/human uncertainty factor of 3, there are really only the three remaining cases where we have chosen to apply empirically based distributions to compensate for defined data base deficiencies identified in the IRIS writeups.  In two of the three cases (Acetophenone and Nickel), the deficiency cited is a lack of reproductive and developmental studies for chemicals that have usable studies of general adult toxicity.  In the third case (Methoxychlor) reproductive/developmental studies were judged adequate, but there was no satisfactory study of general chronic toxicity.

Evans and Baird [13] have previously assembled and analyzed NOAEL data for 35 pesticides for which “complete” toxicological data bases were available (including chronic toxicity studies in rats, dogs, and mice; and reproductive and developmental studies in rats).  Because we deal with the effects of having data for multiple species under the heading of the animal/human adjustment factor, we focus here only on the rat data.  The strategy to develop the appropriate adjustments for incomplete information is to ask, “How often and by how much would each type of data change the overall assessment of the lowest NOAEL (and therefore the RfD, which is based on the lowest available NOAEL)?”

Comparing the rat NOAELs for chronic toxicity, reproductive, and developmental studies, we find that in 26 of the 35 cases (74%) the chronic toxicity study yielded a NOAEL that was at least as low as the lower of the NOAELs for the reproductive and developmental studies.  It can be seen in Figure 3 that in the remaining 9 cases, the distribution of the ratios of the reproductive/developmental NOAELs to the chronic toxic NOAELs appears to correspond reasonably with a lognormal distribution (with z-scores calculated as described above from the order of each ratio in all of the data, including the 26 cases where the ratio was 1 or greater).  In the risk simulation projections, this factor was set to 1 for 75.1% of the simulated trials (corresponding to intersection of the fitted line with the y = 0 level at the top of the graph, for the log of 1, in Figure 3), and to a random value below 1 from the distribution shown for the remaining fraction of the trials.  The adjustment factor of 3 used in the IRIS assessments for Acetophenone and Nickel [or log(1/3) = -0.477 on the y –axis of the plot in Figure 3] corresponds to approximately the 91st percentile of the indicated distribution—in other words, the pesticide-based empirical data would suggest that a larger adjustment factor would be produced by a completed database with reproductive and developmental studies in about 9% of the cases, given a pre-existing rat chronic toxicity study.  

The opposite case—adequate reproductive/developmental studies but a missing or inadequate chronic toxicity—was awarded an adjustment factor of 10 in the IRIS writeup for Methoxychlor.  The Evans and Baird database [13] indicates that addition of a satisfactory chronic toxicity study to pre-existing repro-developmental data would not have lead to a lowering of the overall lowest NOAEL in 20 of 35 cases (57%).  Similar to the previous database incompleteness analysis, Figure 4 indicates that the remaining 15 cases are reasonably described by a lognormal distribution.  In the risk simulation projections, this factor was set to 1 for 49.4% of the simulated trials (corresponding to the fitted line with the y = 0 level at the top of the graph, for the log of 1, in Figure 4), and to a random value below 1 from the distribution shown for the remaining fraction of the trials.  The adjustment factor of 10 used for the Methoxychlor RfD in this case corresponds to about the 94th percentile of the indicated distribution—that is, a larger than 10-fold adjustment of the overall NOAEL would be likely to be produced by adding the missing chronic study about 6% of the time.

Modifying Factor (MF)

None of the sampled IRIS entries utilized this factor, and we therefore did not need to define a distribution for it.

Animal/Human (UFA)

Seventeen of the eighteen RfD’s in our sample were based on experimental animal data and utilized an adjustment factor for animal/human projection.  For our empirical distributional analysis we are fortunate to have available an expanded compilation by Price and coworkers [14] of comparative observations of human Maximum Tolerated Doses (MTD’s) of anti-cancer agents, in relation to putatively equivalent LD10’s in mice, rats, and hamsters, and “TD Lo” values in dogs and monkeys.  In contrast to earlier compilations of Watanabe et al. [
], and Travis and White [
], the Price et al. data include information for 64 compounds—more than double the size of the data base available for the earlier analytical efforts.

It is desirable to analyze these data to assess both the central tendency and spread of the animal/human dose conversion factors for the different types and amounts of interspecies information that the RfD evaluators had available.  In particular we should like to get the best insights from the empirical data on how much equivalent dose conversions might be different (a) when the “critical study” for calculating the RfD comes from different specific animal species (e.g. rats vs dogs), and (b) when data are available for multiple species—allowing the RfD assessors to make a choice of the most sensitive of two or more tested species as the basis for projection--in contrast to the situation where the RfD must be based on an adequate set of toxicity data in only a single species.

Our distributional animal to human equivalent dose projections are made in three steps:

· Doses originally expressed in terms of mg/kg of body weight for the species where the “critical effect” leading to the RfD were adjusted to mg/(kg body weight)0.75 terms to reflect the general dependence of pharmacokinetic elimination on metabolic rates—which tend to scale with (body weight)0.75 [
,
,
].  The standardized body weights used for this scaling are taken from the Registry of Toxic Effects of Chemical Substances [
].

· A further adjustment factor is applied to reflect the median human MTD expected based on the identity and number of species that provided data that potentially could have been used as the basis for the RfD.  The expected geometric means of the ratios of human toxic potency (1/MTD) to the toxic potency estimated from the animal experiments (1/LD10 or 1/TD Lo) are shown in the third column of Table 6, based on the ratios seen in the Price et al. data [14] available for each species or combination of species shown.  Looking from the single-species analyses at the top of the table to the cases for which data for increasing numbers of species are available for choice of the “most sensitive”, it can be seen that the geometric mean ratios of the observed human potency to the human potency projected from the animal potency per (body weight)0.75 tend to decline.  This is the natural result of the fact that the lowest toxic dose inferred for data for more species will tend to make a more “conservative” prediction of human potency than when data are only available for a single animal species.  

· Finally, the uncertainty in each type of animal-to-human toxic potency projection is inferred from the spread (variability) of the ratios of the observed human potencies to the animal-projected potencies for different chemicals.  These spreads are modeled as lognormal distributions with the standard deviations of the logarithms of the observed human to animal-projected potency ratios summarized in the final column of Table 6.  It can be seen that the addition of data for more species in the lower parts of the table tends to reduce these uncertainties quantified as Log(GSD)’s.

Table 7 summarizes the specific species that were considered to have provided material toxicity data in the cases of our sampled RfD’s, and the resulting median and Log(GSD)’s of the animal to human dose conversion ratios that were used as inputs for our risk/uncertainty analysis.  The third to the last column gives the median multiplier for converting the estimate of the animal ED50 to the estimated human ED50.  The final two columns show the 5%-95% confidence limits on this multiplier, inferred from the lognormal variability among analogous cases in the Price et al. data summarized in Table 6.

Human Interindividual (UFH)

This section updates our prior work on this subject [6,15,
] utilizing similar methods for an expanded data base.  Briefly, the data sets selected for analysis are primarily from the pharmaceutical literature, and provide individual data on measurements for at least five reasonably healthy people for pharmacokinetic parameters, or at least histogram-type dose response data (e.g., the numbers of people who respond at two or more dose or exposure levels) for pharmacodynamic observations.  The parameters measured cover the human interindividual variability for various portions of the pathway from external exposure to effect.  The database is classified and analyzed to break down the component variability into the following steps:

· Contact Rate (Breathing rates/body weight; fish consumption/body weight)

· Uptake or Absorption (mg/kg)/Intake or Contact Rate

· General Systemic Availability Net of First Pass Elimination

· Dilution via Distribution Volume

· Systemic Elimination/Clearance or Half Life

· Active Site Availability/General Systemic Availability

· Physiological Parameter Change/Active Site Availability

· Functional Reserve Capacity--Change in Baseline Physiological Parameter Needed to Pass a Criterion of Abnormal Function

The current data base (summarized in Excel spreadsheets, available on our website http://www2.clarku.edu/faculty/dhattis) has a total of 447 data groups (compared to 218 for the last publication [6]), each of which has been analyzed to yield an estimate of interindividual variability expressed in lognormal form as a Log(GSD).  Broadly, the parameters covered include 

· 11 contact rate (2 for children)

· 343 pharmacokinetic (71 include children)

· 93 with pharmacodynamic (and often also pharmacokinetic) information (6 include children)

As before [6], we have analyzed this data base by first assessing the relative statistical strength of the individual Log(GSD) observations, and then running a model that estimates the most likely allocation of human interindividual variability among the different causal steps, given a set of weights estimated as the inverse of the variance of the logarithm of each Log(GSD) data point.  This is done by comparing each Log(GSD) observation to a “predicted” value calculated by adding up the lognormal variances associated with each causal step included in the pathway for that type of observation.  For example, for an inhaled chronic systemic toxicant with data on the fraction of people who respond at various external concentrations, we would have:
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For the database as a whole, the allocation of variability to each step is optimized by minimizing the sum of squared differences between the observed and predicted Log[Log(GSD)]’s for all the observations included in a particular analysis.

Going beyond our prior work, the expanded database described here has allowed us to subdivide the data base and subclassify the individual variability observations more extensively.  On the pharmacokinetic side, we can now make a distinction between pharmacokinetic data sets that include children (under 12 years of age) and those limited to adults.  For pharmacodynamic parameters, we now distinguish among types of responses that are classified by three very rough categories of “severity” (Table 11), and among a few categories organized by the physiological system responding—systemic neurological, cardiovascular, or “immune” and local receptor-mediated responses.  Table 12 lists the responses tentatively placed in the “immune”/local receptor group.

The three parts of Table 13 summarize the main results of our variability/allocation analyses.  In these tables, different causal steps are listed down the leftmost column, and the Log(GSD) results of analyses of different subsets of the data base are listed in the subsequent columns to the right.   To help in interpreting the Log(GSD)s, Table 10 provides a handy translation of Log(GSD) values into other terms that may be more intuitive for readers from a variety of disciplines.  As discussed previously, a span of a little more than 3 standard deviations is of interest because it is the approximate distance in standard deviations between an incidence of effect in the 5-20% range that is directly observable in toxicological studies and the region of 1/100,0000 or so that provides the quantitative risk management benchmark defining “significant” risk in some other contexts.

[It should be understood that in many cases the “steps” listed near one another in Table 13 represent  different and sometimes competing causal processes.  Thus if one is assessing variability in the response to a toxicant expressed as a concentration in an environmental medium, then one should use either the variability steps associated with the oral pathway or those associated with the inhalation or the “other route” pathway depending on the environmental medium involved, but not all together.  In cases where the toxicant is delivered by more than one route, it may be reasonable to assess combined systemic doses depending on the relative amounts proceeding by different routes, but in this kind of case variability needs to be weighted by the magnitude and efficiency of uptake by the different routes.  Similarly, for systemic toxicants, one should either choose the elimination rate variability associated with the groups including children or the one for adults only depending on whether the exposed group (e.g., community residents vs employed workers) is or is not expected to include children.   In the case of multiple types of response, each type of response needs to be treated as a separate assessment/quantitative projection problem.]  do we treat this as another footnote??

Table 13A gives variability results for the uptake and pharmacokinetic parameters.  Notable here is that we do find somewhat more variability in systemic elimination rates for groups including children.  More detail on differences between children and adults in both means and variabilities of pharmacokinetic parameters can be found in the report of work done under an EPA/State of Connecticut Cooperative agreement, led by Dr. Gary Ginsberg [
].  The early results from this project indicate that larger differences in variability may be found in groups that include children in the first days or weeks of life.  This will be followed up in subsequent work.

Table 13B focuses on variability in systemic pharmacodynamic responses.  The first column of numbers shows an analysis of the entire data base, whereas the second and subsequent columns exclude the cases where the response is at the direct site of contact with an environmental medium (e.g., eye irritation, direct respiratory responses, skin hypersensitivity).  Two implications stand out from this table:  

· More variability is associated with relatively less severe responses; this difference is somewhat reduced, although far from eliminated, when the direct contact observations are excluded in the second column, relative to the first.

· More variability is observed for the responses we have grouped in the “immune”/local receptor category than for the more traditional types of systemic toxicological responses that are most frequently observed in chronic animal bioassay studies.  Because none of the RfD’s in our sample were based on this category of responses (although some of the chemicals in the group, such as nickel, may in fact induce such effects), separating the putative “immune”/local receptor responses out for purposes of our analysis has the effect of reducing the overall amount of interindividual variability that would be projected for the RfD chemicals and responses.  On the other hand, in other contexts, such as the responses of diverse exposed populations to airborne particulates [31], this category of response with its larger variability may be of central importance.  

The data for direct contact responses that was isolated in moving from the Table 13B first column to the second are analyzed separately in Table 13C.  It can be seen that the “immune”/receptor vs simple local irritation distinction seen in the last two rows persists when direct contact observations are considered by themselves. 

To apply the results in Table 13 to our RfD chemicals, we choose the variability components that are appropriate for the route of exposure and mode of toxicity that is indicated for each case.  All the RfD’s are expressed in terms of chronic oral exposure to a defined dose of toxicant expressed in mg/kg, rather than a concentration in an environmental medium.  Therefore contact rate variability is not a factor.  We do, however, need to include from the pharmacokinetic components in Table 13A variability in 

· oral systemic availability net of local metabolism or first pass liver elimination (0.124)

· dilution via distribution volume/body weight (0.088)

· (children included) systemic elimination half life or clearance/body weight (0.171)

Examining the modes of toxicity reported for the RfD chemicals (Table 3), the great majority must be classified as simple general systemic toxicity.  For this group we add to the oral chronic-dosing pharmacokinetic variability described above, the following three pharmacodynamic categories, with values taken from the combined group of all systemic pharmacokinetic + pharmacodynamic observations (second column of numbers in Table 13B):

· active site availability/general systemic availability (0.100)

· non-immune physiological parameter change/active site availability (0.199)

· reversible non-immune mild functional reserve capacity—change in baseline physiological parameter needed to pass a criterion of abnormal function (0.353).

Combining the effects of all six of these components of variability using the square-root-of-the-sum-of-squares formula given earlier, we obtain a central estimate of the Log(GSD) for overall interindividual variability for general systemic toxic effects via oral dosing of 0.476.

There are two cases where the toxicity described for the critical response in the RfD writeup is clearly in the neurological category—Ethephon and Tetraethyldithiopyrophosphate.  For these cases the corresponding pharmacokinetic interindividual variability components are taken from the third column of numbers in Table 13B—0.092, 0.229, and 0.337, respectively.  As it happens, the combined variability for this combination of variability components comes out very similar to that for general systemic toxic effects—also 0.476.  

Finally, for two other chemicals—Methyl methacrylate and Tetrachlorobenzene—the toxic effects are best described as falling in the “systemic cardiovascular” category.  Unfortunately we do not have any examples of effects in this category that we rated in the “mild” severity level.  We therefore elected to use the data we do have for the “moderate reversible or irreversible” level of effect for the functional reserve capacity causal step—0.253.  Together with the other pharmacodynamic variability components in the last column of Table 13B, the combined Log(GSD) estimate of lognormal variability for these two chemicals comes to 0.402—somewhat less than the values for the other IRIS entries in our sample.

The final important element that we need to add before we proceed to the Monte Carlo simulations of risks is a quantitative estimate of the uncertainty that arises from the fact that there is likely to be some real variation from chemical to chemical and response to response from our central estimates of human interindividual variability—beyond, of course, the variation we have captured in our so far crude categorizations of different types of responses (i.e. “neurological”; “cardiovascular”; “immune/local receptor”).  Each chemical whose individual human variability in susceptibility for a particular category of response has not been measured essentially is treated here as a random draw from the distribution of all putatively similar chemicals/responses that have been studied and entered into our data base.

The starting point for this assessment is just the spread of our individual observations of Log(GSD)’s from the predictions of our variability allocation model.  However these simple model prediction vs observation comparisons have two kinds of biases relative to our ideal of capturing real variation among chemicals and response in the spread of human individual susceptibility differences: 

· Each Log(GSD) “observation” calculated from a set of human data necessarily has some statistical sampling and other random measurement errors.  These random errors necessarily spread the individual observed Log(GSD)’s apart from one another and from the central estimates of our model to a greater extent than would be seen if we had technically perfect infinite-sample-size measurements of the true human variability in susceptibility for different chemicals and types of responses.  Therefore there is reason to believe that the raw comparison of our observed log(GSD)’s with the model predictions would produce an estimate of uncertainty that is biased high relative to the real chemical-to-chemical variation in actual human interindividual variability, particularly for the statistically weaker observations.  In our past work, to arrive at an estimate of the real chemical-to-chemical variation in the extent of human variability, we simply plotted the root mean square of the prediction error for our individual data points vs the log of the estimated statistical “weight” of each point {the inverse of the variance of the Log[log(GSD)]’s} for groups of observations ordered by weight.  We then took the observed root mean square error for the statistically strongest few groups of data points to be our estimate of real chemical to chemical variation.  In the current work, we take a somewhat more formal route to this analysis by doing a weighted regression model of observed variance{the square of observed – predicted Log[log(GSD))]} calculated as described in the following bullet vs the variance of each point predicted from our a priori model of simple random statistical sampling error. 

· The other source of bias tends to operate in the opposite direction—artificially reducing the calculated difference between the model “predictions” and the individual Log(GSD) observations, particularly for the statistically strongest interindividual variability data sets.  This is because the statistically strongest data points tend to influence the estimates of the model coefficients in just such a way as to minimize the difference between the “predictions” of those observations and the observations themselves.  The remedy for this is to go through a process that is known as “cross-validation” in other contexts.  We removed each Log(GSD) observation in turn, re-estimated the model parameters (that is, the allocation of human interindividual variability among various causal “steps”) and then compared the excluded Log(GSD) observation with the Log(GSD) prediction made by the re-estimated model.  

The final regression equation that resulted from applying this procedure to the observations with pharmacodynamic interindividual variability information was:

Observed Corrected Prediction Variance = {Observed – Statistically Predicted Log[log(GSD)]}2 =

0.0259 (± 0.0092 std error ) + 3.05 (± 1.00 std error) * Statistically Predicted Variance

The square root of the intercept of this equation (0.161 with ± 1 standard error limits of 0.13 – 0.19) provides us with our estimate of the uncertainty of our model-based estimates of human interindividual variability.  In our simulations, therefore, our Log(GSD) estimates of human variability will be represented as lognormal distributions with geometric means equal to the central values shown in Table 6 and geometric standard deviations equal to 100.161 = 1.45.  

Simulation Procedures

The Monte Carlo simulations were all done on Microsoft Excel spreadsheets using 

· the rand() function (which returns a random value between 0 and 1) for random number generation, 

· cumulative normal distribution functions to transform the random numbers into random selections from normal and lognormal distributions, and 

· if tests to impose the truncation limits specified in the previous section for the “missing data” adjustment factor.

Each trial of the simulations was the result of calculations on a single line of the spreadsheet devoted to an individual RfD. 5,000 simulation trials were run at a time on each spreadsheet, and the results presented in the next section were the arithmetic means from three separate runs of 5,000 trials each.  For each chemical the summary results included risk calculations at three multiples of the IRIS RfD (0.1, 1, and 10) and with distributional outputs summarized as the 5th, 50th, and 95th percentiles, and the arithmetic means of the calculated parameters on all 5000 trials for each run.  A representative spreadsheet (for Acetophenone) will be made accessible on our website--http://www2.clarku.edu/faculty/dhattis.

Results

This section has three parts.  In the first, we present our basic findings—we ask, what are the implications of the distributional analysis for the risks at various multiples of traditional RfD’s, and the uncertainties in those risks?  And, given our current distributional assumptions, how do current RfD’s compare with the tentative “straw man” risk management criterion we advanced at the outset—10-5 or less incidence of mild adverse effects on chronic exposure with 95% confidence?

In the next two parts we very briefly summarize the results of a sensitivity analysis.  More details about that analysis are available on our web site (http://www2.clarku.edu/faculty/dhattis) and will be the subject of a second publication.  The analysis addresses two questions: 1) would better information about each source of uncertainty be likely to lead to significantly better estimates of risks and, potentially, greater confidence in the use of higher RfDs? and which are the most significant uncertainties?  2) how sensitive are our conclusions to the choice to use log normal distributions to represent human interindividual variability?” 

Basic Findings

Figure 6 shows the basic distributional results for Acetophenone.   (Acetophenone has the single largest overall uncertainty factor—3000.  However, it is otherwise reasonably typical in the mean risks projected and the degree to which the chronic dose needed to meet the “straw man” criterion is below the current RfD.)   

The major uncertainties in the results are indicated by the very large differences between the 95% confidence risks (open squares) and the median (50% confidence) risks (closed triangles).  It can also be seen that the uncertainties are very different for exposures at different multiples of the IRIS RfD.  The uncertainties increase dramatically as one proceeds from right to left in Figure 6, from higher to lower doses.  By the time one reaches one tenth of the standard IRIS RfD—in the region of the risk level targeted in the “straw man” proposal—the uncertainty spread is so great that the arithmetic mean “expected value” risks (filled circles) exceed the 95th percentile risks.

Full results for all of our 18 sample RfD’s are presented in Table 14.  The data are also conveyed in visual form in Figures 7 and 8 in relation to the overall uncertainty factor and the quantal vs continuous distinction.  Figure 7 shows median risk results, while Figure 8 shows upper 95% confident risks that relate directly to the straw man risk management criterion.  Figure 9 is a similar plot of arithmetic mean “expected value” risks oriented toward the needs of economic tradeoff analyses.

It can be seen in Figure 7 that all but one of the chemicals are expected to pose less than 
10-5 risk when evaluated at the median (50%) confidence level.  That is, in the great majority of cases, the doses associated with this risk level at 50% confidence are between 1 and 10 times higher than the IRIS RfD’s.  

On the other hand, it can be seen in Figure 8 that only one of the 18 IRIS RfD’s is expected to meet the postulated “straw man” criterion of achieving a 10-5 risk level or less with 95% confidence.  The uncertainties in the actual extent of human interindividual variability, animal-to-human dose equivalence and other uncertainty factors are large enough that the doses required to meet the straw man criterion are often between 10 and 100 times less than the IRIS RfD’s (the geometric mean of the 18 ratios is about 0.056 suggesting that the typical RfD would need to be reduced by about 18 fold to meet the straw man criterion).  

In all three Figures 7-9 there is some tendency for the RfD’s with larger overall uncertainty factors to be more “conservative” in the sense of posing somewhat lower mean risks and requiring somewhat smaller downward adjustments to meet the straw man criterion level.  This is the expected result if the traditional uncertainty factors that are added for the compounds with weaker toxicological data bases (i.e. only subchronic rather than chronic data, etc.) tend to reduce prescribed RfD doses somewhat more than would be required on average to compensate for the identified deficiencies in available data for projecting risks.

“Value of Perfect Information” Discussion—Expected Changes in Estimated Mean and 95% Confidence Limit Risks from Reducing Various Uncertainties

Our approach to answering the first sensitivity question, is to assess the “value of perfect information” for several of the distributional assumptions.  What would be the expected effects on the projected mean and 95% confidence levels for risks if new research were to succeed in reducing the spread of each distribution to a single central (median) point—effectively removing the uncertainty covered by each traditional uncertainty/adjustment factor for a specific chemical.  

The only cases where we were not able to use empirical observations as the basis for our analysis.were our assumed distributions of the differences in dosages required to project from quantal LOAELs and (in the absence of LOAELs) quantal NOAELs in the experimental animal systems that contributed the critical studies on which our sample RfDs were based.  For these we have identified plausible changes in the distributional assumptions by comparing different characterizations of the percentiles associated with a quantal LOAEL (and quantal NOAEL), and considered a further elimination of uncertainty in extrapolation.  The reduction in projected risks and change in the 95% confidence setting are quite modest for the LOAELs.  The effect of this calculation using the NOAELs is to increase modestly the risks (and lower the limit for defining an RfD) because of the assymetry in NOAEL uncertainties.    

Somewhat larger but still modest effects are seen in a value-of-perfect information analysis of the animal-human adjustment factor.  The basic conclusion is that if excellent animal and human pharmacokinetic and pharmacodynamic research were to completely resolve all uncertainty in animal-human toxic dose equivalence (mapping the animal and human ED50’s perfectly to their a priori median values), the result would be to increase the dose estimated to cause 1/100,000 risk by about a third, and reduce the mean expected risk at the RfD by about 2-fold.

However, much larger effects than these are seen for the uncertainty in the extent of human interindividual variability.  Extensive human data that completely resolved uncertainty in the Log(GSD) for human variability, and which effectively collapsed the distribution to a point at the currently estimated median values for each chemical, would be expected to increase the dose estimated to cause 1/100,000 risk by about eleven fold for the median RfD, and reduce the mean expected risk at the RfD by about 25-fold.

At this writing, detailed value-of-perfect information calculations have not been done for the other uncertainty factors (subchronic-to-chronic, and database incompleteness).  A preliminary analysis suggests that the effect of removing these uncertainties will be similar to that of removing the uncertainty in animal/human extrapolation. 

Possible Effects of Bi- or Multimodality in the Human Sensitivity Distributions

Finally we discuss the consequences of replacing our simple unimodal assumption for the form of the distribution of human interindividual susceptibilities with mixtures of two lognormally distributed subgroups of similar aggregate variance.  The mixtures chosen for this discussion are within limits that seem not incompatible with the relatively modest degree of departure from lognormality seen in our previous analyses of the individual subject pharmacokinetic data in our data base [6]. 

The use we make of the human interindividual variability analysis differs fundamentally from the way the other analyses of uncertainties are used.  The difference has a theoretical aspect: variability has different risk management implications than uncertainty [8,10]; we recommend choices about the protectiveness of standards based on a variability analysis.  It is also practical: under the Straw Man procedure, variability results are projected to 10-5 while uncertainties are only modeled to a few percent.  Given human limitations, and the phenomenon of “expert overconfidence” it would be foolish to attempt to do more with uncertainty (i.e., to achieve, say 99.9% confidence levels) [
].  

However, the Straw Man recipe does require extrapolating variability to much smaller numbers than uncertainty.  And this raises questions about our use of simple unimodal lognormal distributions for the extrapolation.  The lognormal plots shown in figures 1 – 4 and our plots of pharmacokinetic and toxic response data for individual people in earlier work [5,6,9,12,15,31] show reasonable fits, but they typically extend only over a range of 1-99% (z scores of +/- 2 or 3).  So there is little direct evidence that lognormal distributions describe the tails of the distributions.  Furthermore the theoretical justification for the use of lognormal distributions, the Central Limit Theorem, comes from an asymptotic limit which does not carry much force for the tail of a distribution.  So, a priori, it would not be surprising if lognormality broke down in the tail, and such breakdowns are commonly observed in various environmental settings [
,
,
].  There are also good biological reasons to suggest that such breakdowns might occur with appreciable frequency.  First is the prospect of finding a genetic minority who are substantially more sensitive to particular substances [
,
]. The existence of such a minority would imply a mixed distribution [36] – the sum of two distributions – and this would no longer satisfy the multiplicative conditions that lead to the Central Limit Theorem.  Another possible cause for a breakdown in lognormality is dynamical changes that cause some portion of the population to cross important functional thresholds that either cause further changes to accelerate or cease altogether (as in death).  Finally there are early indications in our work on distributions of pharmacokinetic parameters in very young children (under about 2 months of age) that the maturation of specific enzyme systems responsible for metabolic elimination may sometimes take the form of an “on-off” switch that occurs at a discrete point in time for different people—different times in different individuals.  This kind of mechanism would tend to produce mixture distributions with departures from lognormality that are similar to those tentatively observed in clearance and elimination rate data for some drugs for very young infants [32]. 

The evidence for deviations from our main data compilation is inconclusive.  A careful examination of the high Z (rare events) portion of a fit of those data to a log normal distribution shows some divergence, but it is of questionable significance.  And Monte Carlo simulations with a distribution containing modest admixtures of a secondary mode exhibit differences in each replication that are as large or larger than the observed divergences.    

From these illustrations we can conclude that the lognormal behavior observed over most of the range of observations does not necessarily extend to the extreme tail.   We also conclude that the available information is not adequate to specify an added component to the fit.  However, we can set some limits: a pervasive component at the 1% or higher overall frequency which had substantially more sensitivity (lowering the ED50 twenty-five fold to .04 of the base value, for instance) would show up reasonably strongly and does not appear present in the aggregate data. 

The most relevant issue for this paper is to what extent such deviations from lognormality, if they occur, could be significant for the implementation of the Straw Man proposal.  There are two aspects to this issue: when are deviations detectable?  And, when does the possibility of deviations change appreciably the protectiveness of standards (within the provisions of the Straw Man proposal).  Our analysis of these questions is still incomplete.  We can, however, make some preliminary observations.

Two extreme possibilities for a second component in the distribution (or another sort of deviation from lognormality) illustrate what can and can not be accomplished through such analysis.  Until information is routinely collected, on tens of thousands of people, it will be impossible to rule out sensitivities which arise with that rarity in the population.   Like current practice, the straw man approach to standard formulation does not offer protection against such unidentified possibilities of unknown nature.  The other extreme illustration is a second component which might well be detectable, but whose contribution to risk is small compared to the uncertainty that is already present in the characterization of risk by a single log normal distribution.  

Deviations from lognormality may thus be classified into four categories, based on whether they are detectable or not (with currently available data), and on whether or not they pose a possibility of a significant extra risk (at around the 10-5 level given the current uncertainties in estimating risks).  Among these categories: 1) undetectable deviations which pose little additional risk are not a concern; 2) undetectable deviations which pose significant risk are a concern for society, but the only advance the Straw Man offers over current practice is some added guidance in where to look to detect such risks; 3) detectable deviations which pose little additional risk are not a concern for standard (or reference) setting; they could become relevant when better information is sought to reduce uncertainties and to set standards more precisely; 4)  detectable deviations which pose significant risks, but which have not been identified, are the major concern.  Our preliminary observation is that there is only a limited family of parameter values for admixtures which are potentially detectable with information which will become available soon, which would contribute significantly to risk, but which would not already have appeared strongly in the analyses we have so far conducted. 

To summarize: while our observations are preliminary, we believe that they provide a reasonable basis for concluding:

· The present uncertainty in the geometric standard deviation used in characterizing interindividual human variability is enough to encompass much of the range of possible deviations from lognormality.  

· Much of the range of possible deviations which have the property that they could substantially affect risk in the straw man proposal should be detectable with only modest amounts of further data

· Therefore we believe that the possibility of deviations from lognormality should not represent a significant impediment to the use of the Straw Man or similar benchmarks for assessment of quantitative risks.  Furthermore, the underlying approach provides, as described above, guidance for assessing the likelihood and significance of such deviations. 

Conclusions and Discussion

Our major conclusion is that it is feasible, with current information, to both specify quantitative probabilistic performance objectives for RfD’s and make tentative assessments about whether specific current RfDs for real chemicals seem to meet those objectives.  Similarly it is also possible to make some preliminary estimates of how much risk is posed by exposures in the neighborhood of current RfD’s, and what the uncertainties are in such estimates.  It is therefore possible and, we think, desirable, to harmonize cancer and noncancer risk assessments by making quantitative noncancer risk estimates comparable to those traditionally made for carcinogenic risks. The benefits we expect from this change will be an increase in the candor of public discussion of the possible effects of moderate dose exposures to chemicals posing non-cancer risks, and encouragement for the collection of better scientific information related to toxic risks in people—particularly the extent and distributional form of interindividual differences among people in susceptibility.

Finally, we need to re-emphasize that, as the “straw man” title indicates, this is a tentative analysis intended to help advance public discussion of relevant technical and policy issues.  The data bases on which our distributional projections are based are not as extensive as would be desirable, and our ability to judge the representativeness of the data in the database for untested chemicals is still at a relatively early stage of development.  There is reason for concern that the current data on interindividual variability may understate real variability in exposed humans because of unrepresentativeness of the populations studied in many drug trials (often young healthy adults).  On the other hand, our basic human variability observations undoubtedly include some measurement errors which tend to inflate the estimates of variability relative to true underlying variability that actually affects risks.  There is thus considerable room for improvement in our current understanding, and hope that improvements can be produced with additional research.
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